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Consider a process that is actually random walk butasrrectlymodeled as a random
constant. We have then for the true model

Xk = Xk—1 + €k, €k = unity Gaussian white noise
o?{Xo} = 1
bk = Xk + e, k=0,1,2,... o%e}=01

and for the incorrect model
Xk = C, c~ N(,1)

bk = Xk + €, k=0,1,2... o%el=01

The wrong model haby =1, 2.k =0, Ak =1, Yk = 0.1,X0 = 0, andPO_1 = 1. For
the true model the parameters are the same excepEthat= 1, rather than zero.
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Correctly and incorrectly filtered random walk process
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Computing the Autocorrelation Function

a a4 dy» az a4
a a4 dady az a4

Shift=20:

We multiply elements; a; above each other, and add. Now shift the lower rov

a & a2 az a4
a a a8 a3z a4

Shift=1:



Autocorrelation for random data. The peak at zero measures the variance
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lonospheric delays for one-ways, single and double differences
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Autocorrelation of ionosphere delay for one-ways

PRN | Elevation o (inm) Shift for first zero

(in °) master rover master rover
26 68.9 0.08 0.11 35 30
2 59.0 0.08 0.04 15 35
27 28.0 0.39 0.35 30 32
16 22.8 0.77 0.71 30 30
23 20.4 0.17 0.19 12 20
9 18.5 0.48 0.19 15 30
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Borre, Kai & Gilbert Strang (1997Autocorrelation Functions in GPS Data
Processing: Modeling AspectBages 1143-1150. Institute of Navigation
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Kalman Filters, Correlation Functions, Powel
Spectrums, and Ambiguity Experiments

Kal Borre,Aalborg University
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The following matrix equation

| Do |

can be used in various ways. One method is to solve for the 4 unknowns on an

1
1
1
1

1

-1
(f1/f2)?
—(f1/12)?

A2

| No |

€2 |

(1)

epoch-to-epoch basis. An alternative is to employ (1) as an observation equation in a
In any case we are faced with an interesting problerand| are to be estimated as reals
while N1 and N> by definition arantegers This situation is difficult. One procedure is to
solve for all 4 unknowns as were they reals. This gives what is callledisolution Given

the float solution we can use a smart method that estinhadte@s1dN» as integers. This

refined solution is known as thixed solution A popular method is the LAMBDA methoc
decscribed by Teunissen [4]. However, our Matlab code uses a less complicated met|

described in [5].
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Computed positions for a static receiver. The present observations are taken with active SA. The \
over time is mainly due to SA

X, 'Y, Z components of receiver position relative to mean position
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The first 300 epochs are deleted due to bad data. During epochs 300-1050 the rover remains at rest, from epoch 1050 it is moving a bit.
epochs 1291-1380 it is moved in a circle with radius ca. 16 meters. Then it rests at the circumference in epochs 1380-1587 and then mz
random movement outside the circle in epochs 1615-1787. The difference in computed positions for a static (master) receiver and a mo
receiver. Now the detailed picture of the actual movement becomes cleadiffelnential positions are good to within a few dm.

X, Y, Z components of differential vector
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Double differenced code and phase observationisofiom static receivers. The ambiguitidg are
estimated as Hoat solutionbased on observations from epochs 300—400. Next the vector compone
(X, Y, z) are computed and the vector length.

Estimated vector, L1 observations only, float ambiguities
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The figure shows the innovation for the four satellites as computed with respect to the reference s

covariance function for a selected innovation component, and the corresponding power spectrum
illustrating the color of the innovation noise.

Estimated vector, L1 observations only, float ambiguities
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Float and fixed values df 1 ambiguities:

—221971.00| —221970
664 919.67 664 918
163 531.36 163531

1198426.78| 1198429

The fixed values result from a procedure given by Yang et al. [5]. The above table list:
estimated ambiguities. We observe that the rounded values of the float ambiguities dt
at most 2 from the fixed values.

The standard deviation of the length of the vector between master and rover is
ovector= 16.7 mm for the float solution anéhector = 8.3 mm for the fixed solution. We se
that the vector components drift over time when incorrect ambiguities are used. Fixin
ambiguities to the correct values yields an estimate of the vector components at cm-I¢
even at mm-level.

Helsinki University of Technology November 12, 2001 3 i



Double differenced code and phase observationisjofiom static receivers. Note that the vector leng
IS easier to estimate than its single components z.
Estimated vector, L1 observations only, fixed ambiguities
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The ambiguitiedN; are estimated asfaed solutionbased on observations from epochs 300-400. N

the dramatic increase in accuracy by fixing the ambiguities! Note the nice peak of the covariance
function. The innovations are close to white noise.

Estimated vector, L1 observations only, fixed ambiguities
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The same as Figure 3, but at epoch 250clkwange an ambiguitywith the amount of 1 cycle
Estimated vector, L1 observations only, fixed ambiguities, one changed by 1
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Estimated vector, L1 observations only, fixed ambiguities, one changed by .
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The length of the baseline vectw| = v/x2 + y2 + z2 = d often is easier to estimate th:
the components af = (X, vy, z). We illustrate this by applying the law of variance
propagation:
- 5 -
0X

2 d d d
Od:[gx gy %Z]ZU % :(%vT)ZU(%v).

ad

_ 9z -
For the actual data and with fixed ambiguities we hgye= 3.5 mm,ox = 4.8 mm,
oy = 1L.7mm, and; = 3.2mm. This partially supports our statement.
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All M-files producing the figures in this paper can be found at
kom.auc.dk/ " borre/life-199

The original Ashtech data are stored in fited05. The M-filesbdata, edata, andsdata
read the binary observation files and rearrange the data into a useful MATLAB format
*.dat files.

The callrawrecpo produces our first figure. This file calls two otHdrfiles togeod and
topocent. togeod is a function that computes geodetic coordindtgs., h) given
Cartesian coordinatgs, Y, Z) and the semi-major axes and inverse flattenind for a
reference ellipsoidtopocent transforms a 3-D vectarx into topocentric coordinates
(Dist, Az, El) with origin at X.

The mainM-file makebase reads theé.dat files, estimates ambiguities for DD on L1
according to Yang et al. (1994) and uges eph andfind _eph to compute satellite
positions. The filgget rho computes the distance in ECEF between satellite and rece
at raw transmit time given an ephemeris. Now we can write the observation equations
the unknown vector components, y, z). We solve the normals on an epoch-to-epoch b
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Conclusions

We have given a standard presentation of GPS observations and their characteristics
real data set we focus on a few specific topics: float and fixed ambiguity solutions anc
effect on the estimated vector. In our special case we note that the standard deviatior
vector length is halved when changing from float to fixed solution. We also note that it
easier to estimate the vector length rather than the vector components themselves. L
controlled circumstances we change an ambiguity and study the effect on the solutior
observe how the innovation vector slowly strives for the correct known solution.
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Block Elimination and Weight Matrices
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Block Elimination

A B X1 by
C D||lx]| |b
| ol A B||x | 0| b
—cA 1l 1]|lc D||x “|_cal | by
or explicitly
A B X1 o]
0 D—CAIB||x B b — CA 1
Final result
an B8] [Al04BD-cAlB)lcaAl) —A1BD-CAlB) L
C D N —~(D-cAlp)-lcal (D-CcA1lp)-1
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Schreiber’s Device

In 1877 Schreiber described a procedure for eliminating the unknzyv
(we present a formulation somewhat more general than the original

Let be given a set of observation equatigksl | = b — €. The
unknownx IS eliminated if we delete the columns /&
corresponding to the unknowqi, and add the fictitious
observational row

[a/=7tay aj=tag ... aj=7lay ]
having the negative weightl/a] ¥ ~1ay.

N
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We demonstrate the procedure on a numerical example:

1 0 0
1 1 Xl . 8
1 3||xx| | 8
|1 4 | | 20
The augmented left side of the normaﬁ\;rE_lA is
-1 10"
1 1
[0 1 3 4 § 1 3 | =[10].
1 4
1
! ~z L8
The augmented right side of the normA;rZ _1b IS
-1 1 0"
1 8
[0 1 3 4 § 1 8 | = [40].
1 20
1
! —7 1 L36]




Partition of Observation Equations

Let be given a set of observation equatids = b — € partitioned into

A b w1
Lix=| 1 |=|“ with weights 1

1
A2 97) €2 2

The matrixA1 describes usual geodetic observations whAgeexclusively deals with
observations of coordinates. Considering only the first block row of observations we ¢
usual solutiork] = Xs:

(2)

R = (A[ZPADTIAI S Ty = 2 Al B 0y

The subscriptf stands foffree The X solution relates to a network not constrained to t
observed coordinatds. Of course we suppose; exists!

Next we look for the solutioxc when we include the second block row, namely the
coordinate observation&>x = by — €>. By adding the normals from both rows we get
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(Alsria+ Alsstans = Al + Al s, (3)
We recall that 7+ = ATzt A) and AT =7ty = 785
e = (271 4+ AT 1A TH(= TR + AJ S5 ).

The common step in all derivations is our favorite matrix identity

=(T+A' AT =TT 1A (S + AT 1A LAT L (4)
With (4) we get

k¢ = (Zf — Tt AY(So+ AS s AN TIA ) (271%s + Al =5 y).
Multiplying out yields
ke = Xf + T A =Sy — T AL (0 + Apz ¢ AN T AR

— S AL+ Az AT T Al s .
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Rearranging we get
Rc = Xf — St AL (Do + Apz s AL AR
+ (St - St AY (S + AT AD T IA s ) Al =5y,
Using (4) once again—in the opposite direction—we get
%o = Rf — Tt AL (T + Ao ¢ AN TRk + (3T 4+ ATZS 1Ay TTAT 5 by,
Finally the matrix identity (26) takes us the last step:
Re = Rt — Tt AL (Zo+ A1 AD T ARt + T AL (S0 + A AD) Ty

or rearranged
fe =Rt + Dt Ay (T2 + A2Z 1 Ay) (b — AgRy). (5)

From (3) we read the covariance matrix of tanstrainedestimatexc
Sc= (A3 TAL+ AL S, AT (6)

G UNy,
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We recall thats = (Al £, 1A1)™1, so (6) can be written
Se= i+ Az Ayt (7)
Using (4) we get
Sc=3f - St AL (Zp 4+ AT A TIA S (8)
A nonnegative definite matrix is subtracted frain, so
2ic < Xf. (9)

This says thatovariances in the constrained network are smaller than or equal to thos
In the free network

Putting X, = 0 in (2)—the observation error equals zero—is equivalent to introduce tr
constraintAs X = bo:

Aix =by — e (10)
Aox = bo. (11)

G UNy,
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This has a large impact on formulation of filters. Krarup calls thsual postulatiorof the
least-squares problem, opposed tso# postulatiorof the constraints witlt, > 0.

So setting the observation error equal to zero in a Kalman filter is the same as using ¢
constraint in a standard least-squares formulation.
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Dependency on the Weights

b € A >t 0
b= || e || A || g1 |2 9
b €2 Ao o) 2,

The normal equation for the original, total problem is
(A7 AL+ AT 1A% = Al s by + Al s s, (12)
The perturbed problem is

(Alsrta+ Al S+ (A ) A (R + Ax) =
(A[=7to + AJ s+ (az)bp).  (13)
Now subtract (12) from (13) to find an equation K

(Alz7tAa + Al (as ) a)ax+ Al(as Has = Alaz by,
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We setN = AT =71A; + AT= 1A, andé; = by — Ap%. Then the change iR is
Ax = (N+ Al (az;HAa) tal(azshe,. (14)
Now (4) yields the change in the inverse:
(N+ AT az;HA) P =N NTAT (assh =L+ ApN—TA]) TApN L.

For m observations, this matrix muItipIiesg(Azz_l)éz to give AX. If we specialize to on

single observatiora; IS anm by 1 vector andﬁzz_1 IS a 1 by 1 scalar. We name the
productayN—ta) = sand get

-1
AY
AX = N—lag(l_ = S)(Azz_l) &
1+s(A%;7)
or
A -1
€r(AX
Ax = 28> )1 N~Lal. (15)
1+s(A%;7)
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A First Order Derivation

If we consider amall changeA =1 in the weighting matrix, we can compute the
corresponding small movement in the estimate. The problem is linearized and highe
order terms are ignored:

Atz s hHag+axn = ATzt +az ™ H)b.
SubtractingAT = ~1 A% = ATz ~1bleaves an equation for the first-order correctiof:
ATy~ 1aaz) = ATAT Db - AR).
This correction tak is small whenA £ 1 is small, and when the residual Ax is small.

If we work with the covariance matrix instead ofs —1, linearization givesAx ~1 =
—»~1ax)=~1 Thisis the matrix analog of Ax/x?, the first-order change in/.

Linearization also gives the change@= (AT = ~1A)~1, which contains the variances
and covariances of the estimate

AQ = QAT(aAxHao
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Useful Matrix Identities

Whenever the following inverse matrices exist we have

AR~ 1= pg—1a-1

1+AB1a=Au +BA~1

A and B may not be square

for vectors we especially have

(I +abHla=aq +pTa)~1
A ligHh-l-ana+BIlB=BA+B 1A
(A+BDC) 1=a1_a-lgplicalp—lcal
Dc(A+BDC) 1 =pca1g +BDCA L
—pbc( +A1Bpo)~1a-l
- D +cAiBp)lcal
— (1 +bca1p~1ipcal
=0 1licalplcal
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MATLAB Code Demonstrating the Theory

A=[126;237;,348;4510];
b =[0;7;8;20];

x=A\b

Al =A(,1:2);

A2 = A(;,3);

%Projector

P =eye(4)—Alxinv(Al' xAl)«Al’;
PA=P=*A;

Pb=P=xb;

x3 = Pb(4)/PA(4,3)

%Block elimination

N=A*A;

b0 =A’+b;

bl =b0(1:2);

b2 = b0(3);

A0 =N(1:2,1:2);

B = N(1:2,3);

D =N(3,3);

x3 = inv(D—B’ xinv(A0) = B) » (b2 —B’ »inv(A0) » bl)
%General formula

M= A2 xAlxinv(Al «Al) xAl’;
R=A2-WM;

x3 =inv(R«A2)«R=xb
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