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Consider a process that is actually random walk but isincorrectlymodeled as a random

constantc. We have then for the true model

xk = xk−1 + εk, εk = unity Gaussian white noise,

σ2{x0} = 1

bk = xk + ek, k = 0,1,2, . . . σ2{ek} = 0.1

and for the incorrect model

xk = c, c ∼ N(0, 1)

bk = xk + ek, k = 0, 1, 2, . . . σ2{ek} = 0.1

The wrong model hasFk = 1,6ε,k = 0, Ak = 1,6e,k = 0.1, x̂0 = 0, andP−1
0 = 1. For

the true model the parameters are the same except that6ε,k = 1, rather than zero.
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Correctly and incorrectly filtered random walk process

Observations              
Random walk process       
Filter for correct model  
Filter for incorrect model

0 20 40 60 80 100
−10

−5

0

5

10

15
Simulated random walk process

S
ta

te
 v

ar
ia

bl
e

Helsinki University of Technology November 12, 2001



Computing the Autocorrelation Function

Shift= 0 : a0 a1 a2 a3 a4 . . .

a0 a1 a2 a3 a4 . . .

auto(0) =
n−1∑

0

ai ai /n.

We multiply elementsai ai above each other, and add. Now shift the lower row:

Shift= 1 : a0 a1 a2 a3 a4 . . .

a0 a1 a2 a3 a4 . . .

auto(1) =
n−1∑

1

ai ai−1/n.
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Autocorrelation for random data. The peak at zero measures the variance
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Ionospheric delays for one-ways, single and double differences

Ik =
(82,k − λ2N2)− (81,k − λ1N1)

1− ( f1/ f2)2

0 10 20 30 40 50 60 70 80 90
5

6

7

8

9

10

11

12
One−ways at master

Io
no

sp
he

ric
 d

el
ay

  I 
 [

m
]

Epochs, epoch interval  20 s

 2
 9

16

23

26

27

0 10 20 30 40 50 60 70 80 90
8

9

10

11

12

13

14

15
One−ways at rover

Io
no

sp
he

ric
 d

el
ay

  I 
 [

m
]

Epochs, epoch interval  20 s

 2

 9

16

23

26

27

0 10 20 30 40 50 60 70 80 90
2.65

2.7

2.75

2.8

2.85

2.9

2.95

3

3.05

3.1

3.15
Single differences

Io
no

sp
he

ri
c 

de
la

y 
 I

  [
m

]

Epochs, epoch interval  20 s

 2

 9

16

23

26
27

0 10 20 30 40 50 60 70 80 90
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25
Double differences

Io
no

sp
he

ric
 d

el
ay

  I 
 [

m
]

Epochs, epoch interval  20 s

 2

 9

16

23

26

27

Helsinki University of Technology November 12, 2001



0 10 20 30 40 50 60

−5

0

5

10

15

20

25

x 10
−7

m
2

One-way PRN 2

differenced in time

0 10 20 30 40 50 60

−2

−1

0

1

2

3

4

x 10
−4

m
2

One-way PRN 2

0 10 20 30 40 50 60

−5

0

5

10

15

20

x 10
−6

m
2

Single difference PRN 2

0 10 20 30 40 50 60

−2

−1

0

1

2

3

4

5

x 10
−6

m
2

Double difference
PRN 2−PRN 26

Autocorrelation for ionospheric delay to PRN 2. Upper left showsdifference in time:

Ik − Ik−1, upper right the one-way, lower left the single difference, and lower left the
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Autocorrelation of ionosphere delay for one-ways

PRN Elevation σI (in m) Shift for first zero

(in ◦) master rover master rover

26 68.9 0.08 0.11 35 30

2 59.0 0.08 0.04 15 35

27 28.0 0.39 0.35 30 32

16 22.8 0.77 0.71 30 30

23 20.4 0.17 0.19 12 20

9 18.5 0.48 0.19 15 30
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The following matrix equation




P1

81

P2

82



=




1 1 0 0

1 −1 λ1 0

1 ( f1/ f2)
2 0 0

1 −( f1/ f2)
2 0 λ2







ρ

I

N1

N2



−




e1

ε1

e2

ε2



. (1)

can be used in various ways. One method is to solve for the 4 unknowns on an

epoch-to-epoch basis. An alternative is to employ (1) as an observation equation in a filter.

In any case we are faced with an interesting problem:ρ and I are to be estimated as reals

while N1 andN2 by definition areintegers. This situation is difficult. One procedure is to

solve for all 4 unknowns as were they reals. This gives what is called afloat solution. Given

the float solution we can use a smart method that estimatesN1 andN2 as integers. This

refined solution is known as thefixed solution. A popular method is the LAMBDA method

decscribed by Teunissen [4]. However, our Matlab code uses a less complicated method

described in [5].
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Computed positions for a static receiver. The present observations are taken with active SA. The variation
over time is mainly due to SA
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The first 300 epochs are deleted due to bad data. During epochs 300–1050 the rover remains at rest, from epoch 1050 it is moving a bit. During

epochs 1291–1380 it is moved in a circle with radius ca. 16 meters. Then it rests at the circumference in epochs 1380–1587 and then makes a

random movement outside the circle in epochs 1615–1787. The difference in computed positions for a static (master) receiver and a moving (rover)

receiver. Now the detailed picture of the actual movement becomes clear. Thedifferential positions are good to within a few dm.
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Double differenced code and phase observations onL1 from static receivers. The ambiguitiesN1 are
estimated as afloat solutionbased on observations from epochs 300–400. Next the vector components
(x, y, z) are computed and the vector length.

0 100 200 300 400 500
9.9

9.95

10
Estimated vector, L1 observations only, float ambiguities

x 
[m

]

0 100 200 300 400 500
9.86

9.88

9.9

y 
[m

]

0 100 200 300 400 500
−6.55

−6.5

−6.45

z 
[m

]

0 100 200 300 400 500
15.4

15.45

15.5

no
rm

 o
f 

ve
ct

or
 [

m
]

Helsinki University of Technology November 12, 2001



The figure shows the innovation for the four satellites as computed with respect to the reference satellite,
covariance function for a selected innovation component, and the corresponding power spectrum
illustrating the color of the innovation noise.
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Float and fixed values ofL1 ambiguities:

−221 971.00 −221 970

664 919.67 664 918

163 531.36 163 531

1 198 426.78 1 198 429

The fixed values result from a procedure given by Yang et al. [5]. The above table lists the

estimated ambiguities. We observe that the rounded values of the float ambiguities deviate

at most 2 from the fixed values.

The standard deviation of the length of the vector between master and rover is

σvector= 16.7 mm for the float solution andσvector= 8.3 mm for the fixed solution. We see

that the vector components drift over time when incorrect ambiguities are used. Fixing the

ambiguities to the correct values yields an estimate of the vector components at cm-level or

even at mm-level.
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Double differenced code and phase observations onL1 from static receivers. Note that the vector length
is easier to estimate than its single componentsx, y, z.
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The ambiguitiesN1 are estimated as afixed solutionbased on observations from epochs 300–400. Note
the dramatic increase in accuracy by fixing the ambiguities! Note the nice peak of the covariance
function. The innovations are close to white noise.
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The same as Figure 3, but at epoch 250 wechange an ambiguitywith the amount of 1 cycle
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The length of the baseline vector‖v‖ =
√

x2 + y2 + z2 = d often is easier to estimate than

the components ofv = (x, y, z). We illustrate this by applying the law of variance

propagation:

σ2
d =

[
∂d
∂x

∂d
∂y

∂d
∂z
]
6v




∂d
∂x

∂d
∂y

∂d
∂z


 =

( 1
d v

T)6v
( 1

d v
)
.

For the actual data and with fixed ambiguities we haveσd = 3.5 mm,σx = 4.8 mm,

σy = 1.7 mm, andσz = 3.2 mm. This partially supports our statement.
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All M-files producing the figures in this paper can be found at

kom.auc.dk/~borre/life-l99
The original Ashtech data are stored in files*.105. TheM-filesbdata, edata, andsdata
read the binary observation files and rearrange the data into a useful MATLAB format in the

*.dat files.

The callrawrecpo produces our first figure. This file calls two otherM-files togeod and

topocent. togeod is a function that computes geodetic coordinates(φ, λ, h) given

Cartesian coordinates(X,Y, Z) and the semi-major axisa and inverse flatteningf for a

reference ellipsoid.topocent transforms a 3-D vectordx into topocentric coordinates

(Dist, Az, El) with origin at X.

The mainM-file makebase reads the*.dat files, estimates ambiguities for DD on L1

according to Yang et al. (1994) and usesget_eph and�nd_eph to compute satellite

positions. The fileget_rho computes the distance in ECEF between satellite and receiver

at raw transmit time given an ephemeris. Now we can write the observation equations for

the unknown vector components(x, y, z). We solve the normals on an epoch-to-epoch basis.
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Conclusions
We have given a standard presentation of GPS observations and their characteristics. With a

real data set we focus on a few specific topics: float and fixed ambiguity solutions and the

effect on the estimated vector. In our special case we note that the standard deviation of the

vector length is halved when changing from float to fixed solution. We also note that it is

easier to estimate the vector length rather than the vector components themselves. Under

controlled circumstances we change an ambiguity and study the effect on the solution and

observe how the innovation vector slowly strives for the correct known solution.
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Block Elimination 
 A B

C D




 x1

x2


 =


b1

b2


 .


 I 0

−C A−1 I




 A B

C D




 x1

x2


 =


 I 0

−C A−1 I




b1

b2




or explicitly 
 A B

0 D − C A−1B




 x1

x2


 =


 b1

b2 − C A−1b1


 .

Final result

 A B

C D



−1

=

 A−1(I + B(D − C A−1B)−1C A−1) −A−1B(D − C A−1B)−1

−(D − C A−1B)−1C A−1 (D − C A−1B)−1


 .
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Schreiber's Device
In 1877 Schreiber described a procedure for eliminating the unknownsx1

(we present a formulation somewhat more general than the original one):

Let be given a set of observation equationsA
[ x1

x2

] = b− ε. The

unknownx1 is eliminated if we delete the columns inA

corresponding to the unknownx1, and add the fictitious

observational row

[
aT

16
−1a2 aT

16
−1a3 . . . aT

16
−1an

]

having the negative weight−1/aT
16
−1a1.
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We demonstrate the procedure on a numerical example:




1 0

1 1

1 3

1 4




[
x1
x2

]
=




0

8

8

20


 .

The augmented left side of the normalsAT6−1A is

[
0 1 3 4 8

]




1

1

1

1

− 1
4







0

1

3

4

8



= [10

]
.

The augmented right side of the normalsAT6−1b is

[
0 1 3 4 8

]




1

1

1

1

− 1
4







0

8

8

20

36



= [40

]
.
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Partition of Observation Equations
Let be given a set of observation equationsAx = b− ε partitioned into


 A1

A2


 x =


b1

b2


−


ε1
ε2


 with weights


6
−1
1

6−1
2


 . (2)

The matrixA1 describes usual geodetic observations whileA2 exclusively deals with

observations of coordinates. Considering only the first block row of observations we get the

usual solution̂x1 = x̂ f :

x̂ f = (AT
16
−1
1 A1)

−1AT
16
−1
1 b1 = 6 f AT

16
−1
1 b1.

The subscriptf stands forfree: The x̂ f solution relates to a network not constrained to the

observed coordinatesb2. Of course we suppose6 f exists!

Next we look for the solutionxc when we include the second block row, namely the

coordinate observationsA2x = b2 − ε2. By adding the normals from both rows we get
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(AT
16
−1
1 A1 + AT

26
−1
2 A2)x̂ = AT

16
−1
1 b1 + AT

26
−1
2 b2. (3)

We recall that6−1
f = AT

16
−1
1 A1 andAT

16
−1
1 b1 = 6−1

f x̂ f :

x̂c =
(
6−1

f + AT
26
−1
2 A2

)−1(
6−1

f x̂ f + AT
26
−1
2 b2

)
.

The common step in all derivations is our favorite matrix identity

6 = (T + AT6−1
e A)−1 = T−1 − T−1AT(6e+ AT−1AT)−1AT−1. (4)

With (4) we get

x̂c =
(
6 f −6 f AT

2(62 + A26 f AT
2)
−1A26 f

)(
6−1

f x̂ f + AT
26
−1
2 b2

)
.

Multiplying out yields

x̂c = x̂ f +6 f AT
26
−1
2 b2 −6 f AT

2(62 + A26 f AT
2)
−1A2x̂ f

−6 f AT
2(62 + A26 f AT

2)
−1A26 f AT

26
−1
2 b2.

Helsinki University of Technology November 12, 2001



Rearranging we get

x̂c = x̂ f −6 f AT
2(62 + A26 f AT

2)
−1A2x̂ f

+ (6 f −6 f AT
2(62 + A26 f AT

2)
−1A26 f

)
AT

26
−1
2 b2.

Using (4) once again—in the opposite direction—we get

x̂c = x̂ f −6 f AT
2(62 + A26 f AT

2)
−1A2x̂ f +

(
6−1

f + AT
26
−1
2 A2

)−1AT
26
−1
2 b2.

Finally the matrix identity (26) takes us the last step:

x̂c = x̂ f −6 f AT
2(62 + A26 f AT

2)
−1A2x̂ f +6 f AT

2(62 + A26 f AT
2
)−1b2

or rearranged

x̂c = x̂ f +6 f AT
2(62 + A26 f AT

2)
−1(b2 − A2x̂ f ). (5)

From (3) we read the covariance matrix of theconstrainedestimatex̂c

6c = (AT
16
−1
1 A1 + AT

26
−1
2 A2)

−1. (6)
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We recall that6 f = (AT
16
−1
1 A1)

−1, so (6) can be written

6c = (6−1
f + AT

26
−1
2 A2)

−1. (7)

Using (4) we get

6c = 6 f −6 f AT
2(62 + A262AT

2)
−1A26 f . (8)

A nonnegative definite matrix is subtracted from6 f , so

6c ≤ 6 f . (9)

This says thatcovariances in the constrained network are smaller than or equal to those
in the free network.

Putting62 = 0 in (2)—the observation error equals zero—is equivalent to introduce the

constraintA2x = b2:

A1x = b1 − ε1 (10)

A2x = b2. (11)
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This has a large impact on formulation of filters. Krarup calls this ahard postulationof the

least-squares problem, opposed to asoft postulationof the constraints with62 > 0.

So setting the observation error equal to zero in a Kalman filter is the same as using a
constraint in a standard least-squares formulation.
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Dependency on the Weights

b=

b1

b2


 , ε =


ε1
ε2


 , A =


 A1

A2


 , 6−1 =


6
−1
1 0

0 6−1
2


 .

The normal equation for the original, total problem is
(
AT

16
−1
1 A1 + AT

26
−1
2 A2

)
x̂ = AT

16
−1
1 b1 + AT

26
−1
2 b2. (12)

The perturbed problem is

(
AT

16
−1
1 A1 + AT

2(6
−1
2 + (16−1

2 ))A2
)
(x̂ +1x) =
(
AT

16
−1
1 b1 + AT

2(6
−1
2 + (16−1

2 ))b2
)
. (13)

Now subtract (12) from (13) to find an equation for1x:
(
AT

16
−1
1 A1 + AT

2(6
−1
2 + (16−1

2 ))A2
)
1x + AT

2(16
−1
2 )A2x̂ = AT

2(16
−1
2 )b2.
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We setN = AT
16
−1
1 A1 + AT

26
−1
2 A2 andε̂2 = b2 − A2x̂. Then the change in̂x is

1x = (N + AT
2(16

−1
2 )A2

)−1AT
2(16

−1
2 )ε̂2. (14)

Now (4) yields the change in the inverse:

(
N + AT

2(16
−1
2 )A2

)−1 = N−1 − N−1AT
2
(
(16−1

2 )−1 + A2N−1AT
2
)−1A2N−1.

Form observations, this matrix multipliesAT
2(16

−1
2 )ε̂2 to give1x. If we specialize to one

single observation,aT
2 is anm by 1 vector and16−1

2 is a 1 by 1 scalar. We name the

producta2N−1aT
2 = s and get

1x = N−1aT
2

(
1− 16−1

2

1+ s (16−1
2 )

s

)
(16−1

2 ) ε̂2

or

1x = ε̂2 (16
−1
2 )

1+ s (16−1
2 )

N−1aT
2 . (15)
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A First Order Derivation
If we consider asmall change16−1 in the weighting matrix, we can compute the

corresponding small movement1x̂ in the estimate. The problem is linearized and higher

order terms are ignored:

AT(6−1 + (16−1)
)
A(x̂ +1x̂) = AT(6−1 + (16−1)

)
b.

SubtractingAT6−1Ax̂ = AT6−1b leaves an equation for the first-order correction1x̂:

AT6−1A(1x̂) = AT(16−1)(b− Ax̂).

This correction tôx is small when16−1 is small, and when the residualb− Ax̂ is small.

If we work with the covariance matrix6 instead of6−1, linearization gives16−1 =
−6−1(16)6−1. This is the matrix analog of−1x/x2, the first-order change in 1/x.

Linearization also gives the change inQ = (AT6−1A)−1, which contains the variances

and covariances of the estimatex̂:

1Q = Q AT(16−1)AQ.
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Useful Matrix Identities

Whenever the following inverse matrices exist we have

(AB)−1 = B−1A−1 (16)

(I + AB)−1A = A(I + B A)−1 (17)

A andB may not be square (18)

for vectors we especially have

(I + abT)−1a = a(I + bTa)−1 (19)

(A−1 + B−1)−1 = A(A+ B)−1B = B(A+ B)−1A (20)

(A+ BDC)−1 = A−1 − A−1B(D−1 + C A−1B)−1C A−1 (21)

DC(A+ BDC)−1 = DC A−1(I + B DC A−1) (22)

= DC(I + A−1B DC)−1A−1 (23)

= D(I + C A−1B D)−1C A−1 (24)

= (I + DC A−1B)−1DC A−1 (25)

= (D−1 + C A−1B)−1C A−1. (26)
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MATLAB Code Demonstrating the Theory

A = [1 2 6; 2 3 7; 3 4 8; 4 5 10];
b = [0;7;8;20];
x = A\b
A1 = A(:,1:2);
A2 = A(:,3);
%Projector
P = eye(4) – A1 * inv(A1’ * A1) * A1’;
PA = P * A;
Pb = P * b;
x3 = Pb(4)/PA(4,3)
%Block elimination
N = A’ * A;
b0 = A’ * b;
b1 = b0(1:2);
b2 = b0(3);
A0 = N(1:2,1:2);
B = N(1:2,3);
D = N(3,3);
x3 = inv(D – B’ * inv(A0) * B) * (b2 – B’ * inv(A0) * b1)
%General formula
M = A2’ * A1 * inv(A1’ * A1) * A1’;
R = A2’ – M;
x3 = inv(R * A2) * R * b
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